纯水设备知识:工业循环水九大腐蚀机理全解析
【纯水设备www.chnwr.com】腐蚀是指在周围介质(水、空气、酸、碱、盐、溶剂等)作用下的损耗和破坏(包括金属和非金属)的过程。循环水处理的一个非常重要的任务就是防腐,本文详细介绍了循环水处理的九种腐蚀机理!
1电化学腐蚀
电化学腐蚀是指金属表面与离子导电介质发生电化学反应而产生的损伤。纯水设备反应过程中产生电流,腐蚀金属表面有阴极和阳极。
阳极反应是金属原子失去电子,变成离子状态,并将其转移到介质中的过程,称为阳极氧化。阴极反应是去极化剂从阳极吸收电子的过程。
这两个反应是独立的,同时发生的,它们被称为共轭的。短路电池由正极和负极组成。如金属在海水、土壤和酸、碱、盐溶液中的腐蚀都属于这一类。
极化和去极化
极化:
在金属腐蚀过程中,阳极和阴极之间存在电流流动,说明阳极和阴极之间存在电位差。如果水中没有氧气,阳极腐蚀反应中的电子会在阴极发生如下反应:
2e + 2h + - 2h - H2
生成的原子氢和气体覆盖在阴极表面。循环水处理和冷却水处理产生与腐蚀电位相反的电压,称为过电压,使循环水处理的电位差发生变化,阻止电流的流动,即停止腐蚀过程。
这种由反应产物引起的电位差的变化叫做极化。纯水设备在腐蚀过程中,循环水处理的极化在腐蚀过程中起作用,极化在腐蚀过程中起抑制作用。
去极化:
当水中有溶解氧存在时,阴极反应按下式进行:
H2+1/2O2→H2O或1/2O2+H2O+2e→2OHˉ
由于氧参加了反应,夺走了覆盖在阴极表面上的原子态氢和,因而使气体的极化作用遭到破坏。排除极化的作用称为去极化,氧在腐蚀过程中起了去极化作用苏州去离子水设备,去极化作用起了助长腐蚀过程的作用。
3 电偶腐蚀
很多生产装置是用不同的金属或合金制造而成,这些材料是互相接触的。由于不同金属电位间存在着差异,在水溶液(电介质)中形成电偶电池,较活泼的电位较负的金属是阳极,腐蚀速度要比未偶合时高;电位较正的金属是阴极受到保护,去离子水设备腐蚀速度下降或停止。在系统中,常见的电偶腐蚀有铁和黄铜、铁和不锈钢、铝和钢、镑和钢、以及锌和黄铜等,不论在哪种情况下,都是前一种金属遭受腐蚀。
4 氧浓差腐蚀
氧浓差腐蚀电池是金属在水中腐蚀时最普遍、危害最大,但又是最难防治的一种腐蚀电池。氧浓差电池是介质浓度影响阴极反应而产生最位差。
最常见的氧浓差电池有两种类型,一种是在不用深度的水中由于溶解氧浓度不同而造成氧浓度梯度产生的氧浓差电池纯水设备,如水线腐蚀;另一种则是冷却水系统中最常见,也是危险最大的污垢下腐蚀或叫做沉积物腐蚀。在沉积物下面形成缝隙区,在这些缝隙区的溶液中,氧要得到补充是非常困难的;而缝隙外的金属表面上的溶液,氧的供应很充分,因而缝隙外是富氧区一阴极,而缝隙内则是贫氧区一阳极。缝隙区形成的氧浓差电池造成的腐蚀部位在缝隙之内,或在沉积物下面。
5 缝隙腐蚀
缝隙腐蚀是金属表面被覆盖部位在某些环境中产生局部腐蚀的一种形式。大量热交换器的腐蚀穿孔,其中是最主要的原因是污垢下的腐蚀——缝隙腐蚀的一种类型。
缝隙腐蚀的产生要有两个条件:一是要有危害性阴离子(Cl)存在;二是要有滞留的缝隙作为一个腐蚀部位,缝隙要宽到足够能使液体进入,但又要窄到能保持一个滞留区。
一般认为宽度在几千分之一英寸(1密耳以下)就会导致腐蚀,宽度在1/8英寸(0.3毫米)以上腐蚀很少产生。
6 点蚀
也称为坑蚀、孔蚀,但现成比较统一的叫点蚀。点蚀是一种特殊的局部腐蚀,导致在金属上产生小孔若用P表示腐蚀孔的深度,d表示腐蚀孔的宽度,当P/d≤1时称为局部腐蚀;
当P/d>1时称为点蚀。产生点蚀的原因主要是水中离子或粘泥在金属表面产生沉积,这些沉积物覆盖在金属表面使水中溶解氧和缓蚀剂不能扩散到金属表面上,从而造成局部腐蚀。
水中Cl-对点蚀也有影响,点蚀经常发生在热交热器的高温区和流速缓慢发生沉积的部位,增加水的流速有利于氧的扩散,纯水设备有利于钝化膜的修补,而且亦可带走小孔上的沉积物,有利于控制点蚀的发生。
点蚀是潜伏性和破坏性最大的一种腐蚀类型去离子水设备。点蚀都是大阴极小阳极,有自催化特性。小孔内腐蚀,使小孔周围受到阴极保护。孔越小,阴、阳极面积比越大,穿孔越快。
点蚀发生有时往往是在材料的一侧开始,在另一侧扩大穿孔,使得检测很困难。由于点蚀极强的破坏性,现在已愈来愈引起人们的重视。
7 应力腐蚀
应力腐蚀是指在拉应力作用下,金属在腐蚀介质中引起的破坏。这种腐蚀一般均穿过晶粒,即所谓穿晶腐蚀。应力腐蚀由残余或外加应力导致的应变和腐蚀联合作用产生的材料破坏过程。应力腐蚀导致材料的断裂称为应力腐蚀断裂苏州去离子水设备。应力腐蚀一般认为有阳极溶解和氢致开裂两种。
常见应力腐蚀的机理是:
零件或构件在应力和腐蚀介质作用下,表面的氧化膜被腐蚀而受到破坏,破坏的表面和未破坏的表面分别形成阳极和阴极,阳极处的金属成为离子而被溶解,产生电流流向阴极。
由于阳极面积比阴极的小得多,阳极的电流密度很大,进一步腐蚀已破坏的表面。加上拉应力的作用,破坏处逐渐形成裂纹,裂纹随时间逐渐扩展直到断裂。这种裂纹不仅可以沿着金属晶粒边界发展,而且还能穿过晶粒发展。
8 磨蚀及空化
磨蚀是由于腐蚀流体和金属表面间的相对运动,引起金厲的加速破坏或腐蚀,这类腐蚀常与金厲表面上的湍流程度有关。
湍流使金属表面液体的搅动比层流时更为剧烈,使金属与介质的接触更为频繁,故通常叫做湍流腐蚀。湍流腐蚀实际上是一种机械磨耗和腐蚀共同作用的结果。
磨蚀的外表特征是槽、沟、波纹、圆孔和山谷形,还常常显示有方向性。在工厂中,像泵的叶片、阀、弯管、肘管、涡轮叶片、喷嘴等流速变化较大的部位,易产生磨蚀。
空化作用又称空泡腐蚀,它是磨蚀的一种特殊形式,是由于金属表面附近的液体中有蒸气泡的产生和破灭所引起的。在高流速液体和压力变化的设备中易发生这类腐蚀,如水力涡轮机,船用螺旋桨、泵叶轮等。空泡腐蚀的外表十分粗糙且蚀孔分布紧密,它是腐蚀和机械作用两者引起的。
9 微生物腐蚀
微生物腐蚀是一种特殊类型的腐蚀,它是由于微生物的直接或间接地参加了腐蚀过程所起的金属毁坏作用。微生物腐蚀一般不单独存在,纯水设备往往总是和电化学腐蚀同时发生的,两者很难截然分开。
引起腐蚀的微生物一般为细菌及真菌,但也有藻类及原生动物等,在大多数场合下都可看作是各种细菌共同作用而造成危害的去离子水设备。微生物影响腐蚀主要是通过使电极电位和浓差电池发生变化而间接参与腐蚀作用这条途径,其方式大体分以下几类:
1.由于细菌繁殖所形成的粘泥沉积在金属表面,破坏了保护膜,构成局部电池;
2.由细菌代谢作用引起氧和其它化合物的消耗,形成通气差电池和浓差电池,在局部电池中发生去极化作用;
3.由细菌代谢产物的作用引起的;
(1)影响pH值或酸度;
(2)影响氧化还原电位;
(3)使环境的化学状况发生变化(包括氨、硝酸盐、亚硝酸盐、硫酸盐、硫化物等其他离子,在应中起催化作用);
(4)生成或消耗氧而影响氧的浓度。
微生物腐蚀是一种局部腐蚀,而且几乎都有点蚀的迹象,其危害是极其严重的。苏州皙全皙全纯水设备公司可根据客户要求制作各种流量的纯水设备,去离子水设备,超纯水设备及软水处理设备。纯水设备,实验室纯水设备。
- 上一篇:水处理设备常识:确定污水系统的污泥龄的方法 2019/10/9
- 下一篇:吸附过滤器在油水分离设备中的应用 2012/5/23